4,374 research outputs found

    Quantum information as a non-Kolmogorovian generalization of Shannon's theory

    Get PDF
    In this article we discuss the formal structure of a generalized information theory based on the extension of the probability calculus of Kolmogorov to a (possibly) non-commutative setting. By studying this framework, we argue that quantum information can be considered as a particular case of a huge family of non-commutative extensions of its classical counterpart. In any conceivable information theory, the possibility of dealing with different kinds of information measures plays a key role. Here, we generalize a notion of state spectrum, allowing us to introduce a majorization relation and a new family of generalized entropic measures

    A High Current Proton Linac with 352 MHz SC Cavities

    Full text link
    A proposal for a 10-120 mA proton linac employing superconducting beta-graded, CERN type, four cell cavities at 352 MHz is presented. The high energy part (100 MeV-1 GeV) of the machine is split in three beta-graded sections, and transverse focusing is provided via a periodic doublet array. All the parameters, like power in the couplers and accelerating fields in the cavities, are within the state of the art, achieved in operating machines. A first stage of operation at 30 mA beam current is proposed, while the upgrade of the machine to 120 mA operation can be obtained increasing the number of klystrons and couplers per cavity. The additional coupler ports, up to four, will be integrated in the cavity design. Preliminary calculations indicate that beam transport is feasible, given the wide aperture of the 352 MHz structures. A capital cost of less than 100 Mat10mA,reachingupto280M at 10 mA, reaching up to 280 M for the 120 mA extension, has been estimated for the superconducting high energy section (100 MeV-1 GeV). The high efficiency of the proposed machine, reaching 50% at 15 mA, makes it a good candidate for proposed nuclear waste incineration facilities and Energy Amplifier studies.Comment: 9 Pages, 4 figures, LaTeX2e, html version found from http://hptesla.mi.infn.it/~pierini/publication_list.html . To Appear in the Proceedings of the 1996 LINAC Conference, Geneve, August 26-30 199

    Approximate transformations of bipartite pure-state entanglement from the majorization lattice

    Full text link
    We study the problem of deterministic transformations of an \textit{initial} pure entangled quantum state, ψ|\psi\rangle, into a \textit{target} pure entangled quantum state, ϕ|\phi\rangle, by using \textit{local operations and classical communication} (LOCC). A celebrated result of Nielsen [Phys. Rev. Lett. \textbf{83}, 436 (1999)] gives the necessary and sufficient condition that makes this entanglement transformation process possible. Indeed, this process can be achieved if and only if the majorization relation ψϕ\psi \prec \phi holds, where ψ\psi and ϕ\phi are probability vectors obtained by taking the squares of the Schmidt coefficients of the initial and target states, respectively. In general, this condition is not fulfilled. However, one can look for an \textit{approximate} entanglement transformation. Vidal \textit{et. al} [Phys. Rev. A \textbf{62}, 012304 (2000)] have proposed a deterministic transformation using LOCC in order to obtain a target state χopt|\chi^\mathrm{opt}\rangle most approximate to ϕ|\phi\rangle in terms of maximal fidelity between them. Here, we show a strategy to deal with approximate entanglement transformations based on the properties of the \textit{majorization lattice}. More precisely, we propose as approximate target state one whose Schmidt coefficients are given by the supremum between ψ\psi and ϕ\phi. Our proposal is inspired on the observation that fidelity does not respect the majorization relation in general. Remarkably enough, we find that for some particular interesting cases, like two-qubit pure states or the entanglement concentration protocol, both proposals are coincident.Comment: Revised manuscript close to the accepted version in Physica A (10 pages, 1 figure

    Quantum synchronization as a local signature of super- and subradiance

    Get PDF
    We study the relationship between the collective phenomena of super and subradiance and spontaneous synchronization of quantum systems. To this aim we revisit the case of two detuned qubits interacting through a pure dissipative bosonic environment, which contains the minimal ingredients for our analysis. By using the Liouville formalism, we are able to find analytically the ultimate connection between these phenomena. We find that dynamical synchronization is due to the presence of long standing coherence between the ground state of the system and the subradiant state. We finally show that, under pure dissipation, the emergence of spontaneous synchronization and of subradiant emission occur on the same time scale. This reciprocity is broken in the presence of dephasing noise.Comment: 12 pages, 6 figure

    Unified entropic measures of quantum correlations induced by local measurements

    Full text link
    We introduce quantum correlations measures based on the minimal change in unified entropies induced by local rank-one projective measurements, divided by a factor that depends on the generalized purity of the system in the case of non-additive entropies. In this way, we overcome the issue of the artificial increasing of the value of quantum correlations measures based on non-additive entropies when an uncorrelated ancilla is appended to the system without changing the computability of our entropic correlations measures with respect to the previous ones. Moreover, we recover as limiting cases the quantum correlations measures based on von Neumann and R\'enyi entropies (i.e., additive entropies), for which the adjustment factor becomes trivial. In addition, we distinguish between total and semiquantum correlations and obtain some relations between them. Finally, we obtain analytical expressions of the entropic correlations measures for typical quantum bipartite systems.Comment: 10 pages, 1 figur

    Entanglement degradation in the solid state: interplay of adiabatic and quantum noise

    Get PDF
    We study entanglement degradation of two non-interacting qubits subject to independent baths with broadband spectra typical of solid state nanodevices. We obtain the analytic form of the concurrence in the presence of adiabatic noise for classes of entangled initial states presently achievable in experiments. We find that adiabatic (low frequency) noise affects entanglement reduction analogously to pure dephasing noise. Due to quantum (high frequency) noise, entanglement is totally lost in a state-dependent finite time. The possibility to implement on-chip both local and entangling operations is briefly discussed.Comment: Replaced with published version. Minor change

    Dynamics of Entanglement and Bell-nonlocality for Two Stochastic Qubits with Dipole-Dipole Interaction

    Full text link
    We have studied the analytical dynamics of Bell nonlocality as measured by CHSH inequality and entanglement as measured by concurrence for two noisy qubits that have dipole-dipole interaction. The nonlocal entanglement created by the dipole-dipole interaction is found to be protected from sudden death for certain initial states

    Dynamics of correlations due to a phase noisy laser

    Get PDF
    We analyze the dynamics of various kinds of correlations present between two initially entangled independent qubits, each one subject to a local phase noisy laser. We give explicit expressions of the relevant quantifiers of correlations for the general case of single-qubit unital evolution, which includes the case of a phase noisy laser. Although the light field is treated as classical, we find that this model can describe revivals of quantum correlations. Two different dynamical regimes of decay of correlations occur, a Markovian one (exponential decay) and a non-Markovian one (oscillatory decay with revivals) depending on the values of system parameters. In particular, in the non-Markovian regime, quantum correlations quantified by quantum discord show an oscillatory decay faster than that of classical correlations. Moreover, there are time regions where nonzero discord is present while entanglement is zero.Comment: 7 pages, 3 figures, accepted for publication in Phys. Scripta, special issue for CEWQO 2011 proceeding

    Loss of coherence and dressing in QED

    Get PDF
    The dynamics of a free charged particle, initially described by a coherent wave packet, interacting with an environment, i.e. the electromagnetic field characterized by a temperature TT, is studied. Using the dipole approximation the exact expressions for the evolution of the reduced density matrix both in momentum and configuration space and the vacuum and the thermal contribution to decoherence, are obtained. The time behaviour of the coherence lengths in the two representations are given. Through the analysis of the dynamic of the field structure associated to the particle the vacuum contribution is shown to be linked to the birth of correlations between the single momentum components of the particle wave packet and the virtual photons of the dressing cloud

    Classical Evolution of Quantum Elliptic States

    Get PDF
    The hydrogen atom in weak external fields is a very accurate model for the multiphoton excitation of ultrastable high angular momentum Rydberg states, a process which classical mechanics describes with astonishing precision. In this paper we show that the simplest treatment of the intramanifold dynamics of a hydrogenic electron in external fields is based on the elliptic states of the hydrogen atom, i.e., the coherent states of SO(4), which is the dynamical symmetry group of the Kepler problem. Moreover, we also show that classical perturbation theory yields the {\it exact} evolution in time of these quantum states, and so we explain the surprising match between purely classical perturbative calculations and experiments. Finally, as a first application, we propose a fast method for the excitation of circular states; these are ultrastable hydrogenic eigenstates which have maximum total angular momentum and also maximum projection of the angular momentum along a fixed direction. %Comment: 8 Pages, 2 Figures. Accepted for publication in Phys. Rev.
    corecore